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IMPORTANCE An increased tau positron emission tomography (PET) signal in the medial
temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ)
pathology. Little is known about the longitudinal course of this condition, and its association
with Alzheimer disease (AD) remains unclear.

OBJECTIVE To study the pathologic and clinical course of older individuals with PET-evidenced
MTL tau deposition (TMTL+) in the absence of Aβ pathology (A−), and the association of this
condition with the AD continuum.

DESIGN, SETTING, AND PARTICIPANTS A multicentric, observational, longitudinal cohort study
was conducted using pooled data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July
2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies
(N = 1093) with varying degrees of cognitive performance were deemed eligible if they had
available tau PET, Aβ PET, and magnetic resonance imaging scans at baseline. Of these, 128
participants did not meet inclusion criteria based on Aβ PET and tau PET biomarker profiles
(A+ TMTL−).

EXPOSURES Tau and Aβ PET, magnetic resonance imaging, cerebrospinal fluid biomarkers,
and cognitive assessments.

MAIN OUTCOMES AND MEASURES Cross-sectional and longitudinal measures for tau and Aβ
PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aβ42/40
and tau phosphorylated at threonine 181 p-tau181 available in a subset).

RESULTS Among the 965 individuals included in the study, 503 were women (52.1%) and the
mean (SD) age was 73.9 (8.1) years. A total of 51% of A− individuals and 78% of A+ participants
had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy
younger (aged <39 years) controls. Compared with A− TMTL−, A− TMTL+ participants showed
statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET
increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+

showed faster and more cortically widespread tau PET increases. In contrast to participants
with A+ TMTL+, those with A− TMTL+ did not show any noticeable Aβ accumulation over
follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis
confirmed longitudinal p-tau181 increases in A− TMTL+ in the absence of increased Aβ
accumulation. Participants with A− TMTL+ had accelerated MTL atrophy, whereas those with
A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions.
Increased MTL tau PET uptake in A− individuals was associated with cognitive decline, but at a
significantly slower rate compared with A+ TMTL+.

CONCLUSIONS AND RELEVANCE In this study, individuals with A− TMTL+ exhibited progressive
tau accumulation and neurodegeneration, but these processes were comparably slow,
remained largely restricted to the MTL, were associated with only subtle changes in global
cognitive performance, and were not accompanied by detectable accumulation of Aβ
biomarkers. These data suggest that individuals with A− TMTL+ are not on a pathologic
trajectory toward AD.
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Amyloid-β (Aβ) plaques and tau neurofibrillary tangles
are the hallmarks of Alzheimer disease (AD).1,2 The pres-
ence of neurofibrillary tangles has been observed to be

tightly linked to increased Aβ load.3 However, the presence of
neurofibrillary tangles in the medial temporal lobe (MTL) has
also been observed in older individuals without substantial Aβ
pathology,4 a condition that has been termed primary age-
related tauopathy (PART).5 Over recent years, clinicopathologic
association studies have shed light on the clinical and neurode-
generative correlates of PART.6-10 Yet, being a neuropathologic
entity that is only diagnosed at autopsy, little is known about the
temporal course of this condition, and its association with down-
stream Aβ accumulation and the AD continuum11 remains
controversial.12-14

Positron emission tomography (PET) studies have also con-
sistently shown increased MTL tau PET signal in a subset of
individuals with negative Aβ PET scans,15-17 which may re-
flect PART, among other possible conditions.18 The in vivo PET-
based identification of these individuals also allows studying
their future clinical and pathologic progression.

In this study, we used data from a large multicohort sample
to study the longitudinal pathologic characteristics and fu-
ture clinical course of Aβ PET-negative (A−) individuals who
show increased MTL tau PET signal (TMTL+). Specifically, we
studied baseline characteristics and longitudinal changes in
cognition, neuroimaging, and cerebrospinal fluid (CSF) bio-
markers in these individuals and contrasted them to biomarker-
negative controls as well as to individuals with an AD-typical
Aβ- and tau-positive PET profile.

Methods
Study Design
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Har-
vard Aging Brain Study (HABS),19 and AVID-A05 study co-
horts (eMethods in Supplement 1). Informed written consent
was obtained from all participants or their corresponding care-
givers. All protocols were approved by each cohort’s respec-
tive institutional ethical review board. This study followed the
Strengthening the Reporting of Observational Studies in Epi-
demiology (STROBE) reporting guideline. Data were collected
between July 2, 2015, and August 23, 2021. We included all
participants who had undergone concurrent structural
magnetic resonance imaging, Aβ PET, tau PET, and clinical
evaluation within a 6-month window (N = 1093). Participants
were further classified into 4 groups according to PET-based
Aβ (A) and tau (T) status, as described in the Neuroimaging
section: A− TMTL− (n = 250), A− TMTL+ (n = 264), A+ TMTL+

(n = 451), and A+ TMTL− (n = 128). Additionally, a subcohort of
16 healthy younger controls (maximum age, <39 years) with
concurrent magnetic resonance imaging and tau PET scans
from the AVID-A05 study was included for the definition of the
tau PET positivity threshold.

A subset from the ADNI study had baseline and follow-up
CSF biomarkers available (described in the CSF Biomarkers sec-
tion), and all participants had baseline cognitive data. Sub-

sets of the study participants underwent follow-up neuroim-
aging (mean [SD], 2.36 [0.76] years for Aβ PET and 1.83 [0.84]
years for tau PET) and cognitive assessments (eMethods in
Supplement 1). Participants’ characteristics are provided in
the Table.

Neuroimaging
Magnetic resonance imaging acquisition details for ADNI,
HABS, and AVID-A05 are reported in the eMethods in Supple-
ment 1. Magnetic resonance images were segmented with Free-
Surfer, version 7.1.1 and Statistical Parametric Mapping 12
(SPM12, Wellcome Department of Imaging Neuroscience, In-
stitute of Neurology). FreeSurfer-derived regions of interest
(ROI) were merged to generate masks resembling regions
affected by neurofibrillary tangle pathology in Braak stages I/II,
III/IV, and V/VI (eMethods in Supplement 1).20,21 FreeSurfer-
based cortical thickness maps were coregistered to the
fsaverage template and smoothed with a 2-dimensional iso-
tropic gaussian filter of 12 mm full width at half maximum.

PET acquisitions followed study-specific protocols that are
detailed in the eMethods in Supplement 1. Tau-PET scans were
acquired using [18F]flortaucipir (FTP), and Aβ-PET scans were
acquired using either [18F]florbetapir (ADNI and AVID-A05),
[18F]florbetaben (ADNI), or [11C]Pittsburgh compound B (HABS)
radiotracers. The multicentric PET scans were preprocessed
using an in-house-developed pipeline that replicated the ADNI
pipeline for PET scanner harmonization.22,23 Scanner-
specific gaussian filters were applied to each PET image
(regardless of PET imaging modality) to reach a uniform iso-
tropic resolution of 8 mm.

For FTP-PET scans, region-based voxelwise24 partial vol-
ume correction was applied using the PETPVC toolbox25 and
Baker atlas.26 Global standardized uptake value ratio (SUVR)
in Aβ-PET scans was quantified using the centiloid scale27

(eMethods in Supplement 1). In addition, cortical surface SUVR
maps were generated for all PET scans using FreeSurfer,28,29

coregistered to the fsaverage template, and smoothed with a
2-dimensional isotropic gaussian filter of 10 mm full width at
half maximum.

Key Points
Question What is the longitudinal trajectory of older individuals
who show positron emission tomography–assessed medial
temporal lobe (MTL) tau deposition in the absence of amyloid-β
(Aβ) pathology (A− TMTL+)?

Findings In this cohort study of 969 older participants, A− TMTL+

individuals displayed moderate tau accumulation mainly restricted
to the MTL, which was paralleled by cerebrospinal fluid
phosphorylated tau increases and colocalized atrophy
progression; no significant Aβ accumulation was observed. By
contrast, Aβ-positive individuals showed pronounced and
cortically widespread tau accumulation, which was accompanied
by extratemporal cortical atrophy and significantly faster cognitive
decline.

Meaning The findings of this study suggest that individuals with
A− TMTL+ do not appear to be on a pathologic trajectory toward
Alzheimer disease.
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To minimize the effect of subthreshold Aβ burden in the
A− TMTL+ study group,30-32 Aβ positivity was defined using a
conservative cutoff of 12 centiloids.27 This cut point proved to
optimally discriminate between Thal phases 0 to 1 and 2 to 533

and it is therefore lower compared with traditional cut points
based on discrimination of AD neuropathologic change levels
(24.4 centiloids33) or reliable worsening (19 centiloids34). The
tau-positivity threshold was defined as the 95th percentile of
regional entorhinal cortex (ERC) SUVR values in the younger
control cohort34 (SUVR = 1.21) (eFigure 1 in Supplement 1).

CSF Biomarkers
Cerebrospinal fluid samples were collected for a subset of ADNI
participants and processed according to previously described
protocols.35 Concentrations of Aβ1-42, Aβ1-40, and tau phos-
phorylated at threonine 181 (p-tau181) were measured by the
ADNI Biomarker Core using the Roche Elecsys β-amyloid(1-
42), β-amyloid(1-40), and phospho-tau (181P) CSF immunoas-
says. The CSF metrics used in this study included the baseline
Aβ42/40 ratio (n = 359) and p-tau181 (n = 485) concentrations,

as well as follow-up measurements for a subset of individuals
(Aβ42/40: n = 77; mean [SD], 2.30 [1.03] years; p-tau181: n = 99;
2.34 [1.05] years).

Cognitive Assessments
Cognitive performance in cognitively unimpaired individu-
als was assessed using a modified version of the Preclinical Alz-
heimer Cognitive Composite36 (PACC) derived as the sum of
the z scores of the Mini-Mental State Examination total score,
Log-Transformed Trail Test B, and Logical Memory Delayed
Recall (PACC-3). The PACC-3 is designed to detect the first signs
of cognitive decline in otherwise asymptomatic individuals.
Cognitive performance in cognitively impaired individuals
(combined mild cognitive impairment and AD dementia) was
assessed using the Alzheimer’s Disease Assessment Scale–
Cognitive Subscale (ADAS-Cog 11).

Statistical Analysis
Statistical analysis of differences between the A− TMTL− vs A−

TMTL+ and A+ TMTL+ study groups was performed using gen-

Table. Cohort Characteristics

Characteristic A− TMTL− (n = 250) A− TMTL+ (n = 264) A+ TMTL+ (n = 451)
Study, No. (%)

ADNI 128 (51.2) 178 (67.4) 330 (73.2)

HABS 65 (26.0) 52 (19.7) 36 (8.0)

AVID-A05 57 (22.8) 34 (12.9) 85 (18.8)

Age, mean (SD), y 70.0 (7.8) 74.9 (7.6) 75.6 (8.0)

Gender, No. (%)

Men 108 (43.2) 133 (50.4) 221 (49.0)

Women 142 (56.8) 131 (49.6) 230 (51.0)

Years of education, mean (SD) 15.96 (2.80) 16.73 (2.60) 16.43 (2.47)

APOE-ε4 carrier, No. (%)a 49 (19.9) 45 (18.0) 236 (54.4)

APOE-ε2 carrier, No. (%)a 42 (16.3) 36 (14.4) 19 (4.4)

Cognitive status, No. (%)

CU 189 (75.6) 175 (66.3) 180 (39.9)

MCI 55 (22.0) 71 (26.9) 172 (38.1)

ADD 6 (2.4) 18 (6.8) 99 (22.0)

MMSE score, mean (SD) 28.9 (1.59) 28.6 (1.93) 26.9 (3.60)

CU PACC-3, mean (SD) 0.25 (1.92) −0.17 (2.30) −0.27 (2.23)

CI ADAS-Cog 11, mean (SD) 9.85 (5.50) 10.3 (5.4) 13.9 (7.4)

Baseline biomarkers, mean (SD)

Centiloids −0.72 (7.76) 0.46 (7.89) 68.52 (37.31)

Braak stages I/II FTP SUVR 1.10 (0.09) 1.42 (0.35) 1.80 (0.56)

Braak stages III/IV FTP SUVR 1.19 (0.08) 1.30 (0.11) 1.72 (0.67)

Braak stages V/VI FTP SUVR 1.07 (0.08) 1.15 (0.10) 1.37 (0.44)

Log CSF Aβ42/40 −2.47 (0.19) −2.50 (0.22) −3.20 (0.41)

Log CSF p-tau181, pg/mL 2.80 (0.32) 2.91 (0.31) 3.32 (0.47)

Longitudinal biomarkers and cognition, yearly
rates of change (SE)

Centiloids −0.17 (0.55) 0.0132 (0.6) 3.04 (1.98)

Braak stages I/II FTP SUVR 0.01 (0.02) 0.02 (0.02) 0.06 (0.05)

Braak stages III/IV FTP SUVR 0.01 (0.01) 0.02 (0.01) 0.07 (0.07)

Braak stages V/VI FTP SUVR 0.01 (0.01) 0.01 (0.01) 0.04 (0.05)

CU PACC-3b −0.06 (0.20) −0.09 (0.20) −0.14 (0.25)

CI ADAS-Cog 11 1.30 (2.71) 1.61 (2.21) 3.11 (3.28)

Log CSF Aβ42/40 (1/y) −0.0027 (0.0005) −0.0027 (0.0007) −0.0034 (0.0006)

Log CSF p-tau181, pg/mL/y 0.011 (0.013) 0.023 (0.022) 0.023 (0.017)

Abbreviations, ADAS-Cog 11,
Alzheimer’s Disease Assessment
Scale–Cognitive Subscale;
ADD, Alzheimer disease dementia;
ADNI, Alzheimer’s Disease
Neuroimaging Initiative;
APOE, apolipoprotein E; CI, cognitive
impairment; CSF, cerebrospinal fluid;
CU, cognitive unimpairment;
FTP, [18F]flortaucipir; HABS, Harvard
Aging Brain Study; MCI, mild
cognitive impairment;
MMSE, Mini-Mental State
Examination; p-tau181, tau
phosphorylated at threonine 181;
PACC-3, Preclinical Alzheimer
Cognitive Composite;
SUVR, standardized uptake value
ratio.
a Only 915 participants had available

APOE data (A− TMTL−, 241; A−

TMTL+, 245; A+ TMTL+, 429).
b Sum of the z scores of the MMSE

total score, Log-Transformed Trail
Test B, and Logical Memory Delayed
Recall.

Increased Medial Temporal Tau Uptake Without Amyloid-β Positivity Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology October 2023 Volume 80, Number 10 1053

Downloaded from jamanetwork.com by guest on 04/16/2024



eralized linear models (GLMs) controlled for age, sex, cohort
(ADNI, HABS, and AVID-A05), and baseline centiloid values in
the case of A− TMTL+ vs A− TMTL− comparisons. Effect sizes
were measured using Cohen d, and group differences be-
tween cortical maps were corrected for multiple compari-
sons using the FreeSurfer clusterwise correction for multiple
comparisons. Longitudinal rates of change were computed
using linear mixed-effect models with participant-specific in-
tercepts and slopes (eg, Vk ~ time + (time|participant), where
Vk is the value on the kth vertex of a cortical map).

First, we investigated vertex-wise and ROI-based group dif-
ferences in baseline FTP SUVRs. Vertex and ROI-based group
differences were also computed for the FTP SUVR longitudi-
nal rates of change. Additionally, group differences in longi-
tudinal centiloid accumulation were similarly investigated.
Analysis of baseline and longitudinal differences in CSF
Aβ42/40 and p-tau181 biomarker levels used analogous sta-
tistical models, but values were log-transformed before analy-
sis to account for the exponential progression of CSF bio-
marker levels. Baseline and longitudinal differences across
groups in cognitive metrics were studied separately for cog-
nitively unimpaired and cognitively impaired individuals be-
cause of the different neuropsychological instruments that are
best suited to detect the subtle cognitive changes in partici-
pants without impairment and more overt cognitive changes
in those with impairment. As post hoc sensitivity analyses, we
repeated the previous analyses with higher cut points for Aβ
(24 centiloids) and tau PET positivity (mean +2.5 SD of the ERC
FTP, SUVR = 1.27). Moreover, we assessed the outcome of using
a larger MTL ROI comprising the ERC and amygdala.

In addition to the comparisons of dichotomized A and
TMTL groups, complementary analyses were performed to as-
sess continuous associations of baseline ERC FTP SUVR with
vertex-wise cortical thickness patterns across all A− individu-
als, using GLMs adjusted by sex, age, cohort, and baseline cen-
tiloid. Analogously, associations between baseline ERC FTP
SUVR and cognitive performance were studied across the A−

subcohort with equally adjusted GLMs. Statistical tests were
2-sided, and P < .05 was considered statistically significant. The
strength of the associations was assessed using the Pearson par-
tial correlation coefficient (r).

Results
Demographic Characteristics
Of the 965 individuals included in the study, 462 were men
(47.9%) and 503 were women (52.1%); mean (SD) age was 73.9
(8.1) years. A total of 51% A− individuals and 78% of A+ partici-
pants had increased tau PET signal in the ERC (TMTL+) com-
pared with healthy younger (age, <39 years) controls. Further
demographic and biomarker characteristics are reported in the
Table. Of participants with race data available (ie, ADNI and
HABS cohorts), 92.9% of the individuals were White. Al-
though no significant differences between women and men
were found in baseline Braak stages I/II FTP-PET SUVR
(d = 0.10; 95% CI, −0.02 to 0.23; P = .10) (eFigure 2 in Supple-
ment 1), slightly higher longitudinal rates of Braak stages I/II

FTP-PET SUVR change were observed in women (d = 0.13; 95%
CI, 0.02-0.23; P = .02). Both A− TMTL+ (mean [SD] age, 74.9
[7.6] years; d = 0.64; 95% CI, 0.47-0.83; P < .001) and A+ TMTL+

(age, 75.6 [8.0] years; d = 0.70; 95% CI, 0.55-0.86, P < .001) in-
dividuals were significantly older than the A− TMTL− control
cohort (age, 70.0 [7.8] years). Similarly, both the A+ TMTL+

(60.4%; d = 0.69; 95% CI, 0.56-0.80; P < .001) and A− TMTL+

(33.7%; d = 0.23; 95% CI, 0.06-0.40; P = .009) groups had a
significantly higher proportion of cognitively impaired indi-
viduals than the A− TMTL− group (24.4%). The prevalence of
apolipoprotein E (APOE)–ε4 was higher among A+ TMTL+ in-
dividuals (54.4%, d = 0.64; 95% CI, 0.54-0.76; P < .001), but
was similar between the A− TMTL+ (18.0%; d = −0.01; 95% CI,
−0.19 to 0.16; P = .68) and the A− TMTL− control group (19.9%).
By contrast, both the A− TMTL− (16.3%) and A− TMTL+ groups
(14.4%; d = 0.08; 95% CI, −0.10 to 0.25; P = .38) showed sig-
nificantly higher proportions of APOE-ε2 carriers than the A+

TMTL+ group (4.4%; d = 0.38; 95% CI, 0.24-0.49; P < .001).

Tau and Aβ Accumulation
Analysis of baseline FTP SUVR contrast maps (Figure 1A) noted
increased tau burden in A− TMTL+ individuals to be most pro-
nounced in the MTL and extending into the inferior temporal
lobe and the ventromedial prefrontal cortex, while A+ TMTL+

individuals showed the AD-characteristic pattern of wide-
spread cortical tau accumulation across temporal, parietal, and
frontal areas. In vertex-wise longitudinal FTP SUVR analyses,
A− TMTL− individuals showed little increase of tau accumu-
lation over time, whereas the A− TMTL+ cohort displayed a
moderate increase of tau uptake restricted to the MTL and in-
ferior temporal regions (Figure 1B). By contrast, A+ TMTL+ par-
ticipants showed a pronounced and widespread increase of
tau accumulation. These differences were confirmed in di-
rect statistical contrasts between the TMTL+ groups and the
A− TMTL− group (Figure 1C). An ROI-based FTP SUVR analy-
sis showcased similar results (eFigure 3 in Supplement 1), with
A− TMTL+ participants showing statistically significant albeit
moderate longitudinal (mean [SD], 1.83 [0.84] years) tau PET
increases that were largely limited to the temporal lobe,
whereas those with A+ TMTL+ showed faster and more corti-
cally widespread tau PET increases.

Regarding Aβ accumulation, centiloid rates of change in
A− TMTL+ participants did not show any significant increase
in centiloids over time (mean [SD], 0.01 [12]; P = .82) (eFig-
ure 4 in Supplement 1), although the slopes were slightly
different from the slopes of the A− TMTL− group (−0.17 [0.55];
d = 0.29; 95% CI, 0.04 to 0.54; P = .04) (Figure 1D). By con-
trast, A+ TMTL+ individuals showed a pronounced increase in
centiloids over time (3.04 [1.98] vs −0.17 [0.55]; d = 1.89; 95%
CI, 1.64 to 2.24; P < .001).

In the CSF subset analysis, A− TMTL+ participants showed
moderately higher baseline p-tau181 levels compared with the
A− TMTL− group (d = 0.24; 95% CI, 0.002-0.48; P = .04), but
no significant difference in Aβ42/40 (d = −0.10; 95% CI, −0.34
to 0.14; P = .38) (Figure 2A), whereas A+ TMTL+ individuals ex-
hibited the expected alterations in both Aβ42/40 (d = −1.38;
95% CI, −1.66 to −1.14; P < .001) and p-tau181 (d = 1.00; 95%
CI, 0.81-1.20; P < .001) levels (Figure 2A). In longitudinal analy-
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ses, the A− TMTL+ group showed larger increases in p-tau181
levels over time at trend-level statistical significance (d = 0.52;
95% CI, 0.08-1.04; P = .07), but no significant difference in
Aβ42/40 ratio change (d = 0.34; 95% CI, −0.16 to 0.94; P = .22),
compared with the A− TMTL− group (Figure 2B). The A+ TMTL+

group showed significantly faster rates of change in both bio-
markers (Aβ42/40: d = −1.33; 95% CI, −1.92 to −0.87; P < .001;
p-tau181: d = 0.53; 95% CI, 0.07-1.06; P = .04).

Neurodegeneration
Compared with the A− TMTL− group, A− TMTL+ participants
(Figure 3A) showed cortical thinning at baseline mainly re-

stricted to the MTL, whereas A+ TMTL+ participants showed
more widespread cortical thinning extending to the lateral tem-
poral lobe, the posterior cingulate, and the parietal and fron-
tal lobes. This pattern was also reflected in ROI-based analy-
ses, with A− TMTL+ individuals showing significant cortical
thinning in Braak stages I/II and Braak stages III/IV only
(Figure 3B). The complementary analysis using continuous tau
PET measures confirmed an association between ERC FTP
SUVR and medial temporal neurodegeneration across A− in-
dividuals (eFigure 5 in Supplement 1).

In longitudinal analyses, A− TMTL+ individuals showed
faster cortical thinning compared with the A− TMTL− group that

Figure 1. Cross-Sectional and Longitudinal Characterization of Amyloid-β (A) and Tau (T) Positron Emission Tomography Accumulation
in the Medial Temporal Lobe (MTL)
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longitudinal FTP SUVR patterns in A− TMTL−, A− TMTL+, and A+ TMTL+
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differences in longitudinal FTP SUVR in A− TMTL+ and A+ TMTL+ individuals
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individuals.
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was largely restricted to the MTL, while accelerated cortical
thinning in the A+ TMTL+ group further extended to the lat-
eral temporal, parietal, and frontal lobes (Figure 3C). Simi-
larly, ROI-wise analyses (Figure 3D) showed significantly faster
cortical thinning in A− TMTL+ participants, mostly in Braak
stages I/II.

Cognition
At baseline, cognitively impaired A+ TMTL+ individuals showed
lower ADAS-Cog 11 scores compared with the cognitively
impaired A− TMTL− group (d = −0.57; 95% CI, −0.79 to −0.34;
P < .001), but neither the cognitively impaired A− TMTL+ in-
dividuals nor any of the cognitively unimpaired groups dif-
fered significantly from the respective A− TMTL− controls
(Figure 4). In the complementary analysis with continuous tau
PET measures, baseline ERC FTP SUVR was significantly
correlated with worse cognition in cognitively impaired A− in-
dividuals (ADAS-Cog 11: r = 0.26; 95% CI, 0.08-0.46; P = .001),
but not in cognitively unimpaired A− individuals (PACC-3:
r = 0.02; 95% CI, −0.09 to 0.13; P = .72).

Longitudinally, cognitively impaired individuals with A−

TMTL+ showed a comparable degree of moderate decline in
ADAS-Cog 11 scores compared with cognitively impaired A−

TMTL− individuals (d = 0.25; 95% CI, −0.11 to 0.58; P = .18),
whereas cognitively impaired A+ TMTL+ participants showed
significantly faster cognitive deterioration (d = 0.60; 95%
CI, 0.30-0.90; P < .001) (eFigure 6 in Supplement 1). Among
cognitively unimpaired participants, neither A− TMTL+

(d = −0.06; 95% CI, −0.25 to 0.40; P = .61) nor A+ TMTL+

(d = −0.17; 95% CI, −0.44 to 0.14; P = .15) individuals showed
a significant difference in PACC-3 decline compared with the
A− TMTL− group. In the complementary analysis with con-
tinuous tau PET measures, baseline ERC FTP SUVR was sig-
nificantly correlated with faster cognitive decline in cogni-
tively impaired A− individuals (ADAS-Cog 11: r = 0.30; 95%
CI, 0.15-0.53; P < .001), but not in cognitively unimpaired A−

individuals (PACC-3: r = 0.03; 95% CI, −0.22 to 0.14; P = .63).

Sensitivity Analyses
Overall, the results derived from the sensitivity analyses were
consistent with the main results presented in this study. Simi-
lar patterns of tau PET SUVR, CSF biomarkers, atrophy, and
clinical change were found across the A TMTL groups when
changing the Aβ PET cut point to 24 centiloids (eFigures 7-10
in Supplement 1) and when changing the Braak stages I/II SUVR
cut point to 1.27 (eFigures 11-14 in the Supplement 1). Analy-
ses using a larger MTL ROI (ERC plus amygdala) yielded a
slightly different distribution of A TMTL groups (eFigure 15 in
Supplement 1) and showed that the Aβ- and tau- accumula-
tion patterns were similar to those obtained with the ERC ROI.

Discussion
In this study, we explored in detail the pathologic and clinical
course of older individuals who display PET-measured tau

Figure 2. Baseline and Longitudinal Characterization of Cerebrospinal Fluid (CSF)
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accumulation in the MTL in the absence of Aβ pathology (A−

TMTL+), a condition reminiscent of pathologically defined
PART.5 In a large multicentric cohort of almost 1000 older in-
dividuals, we found that increased MTL tau PET signal with-
out notable Aβ pathology is relatively common in older indi-
viduals and is associated with further longitudinal tau PET
uptake increase, which remains largely restricted to the MTL.
These tau PET increases colocalize with progressive MTL neu-
rodegeneration, are associated with only subtle changes in
global cognitive performance, and are not accompanied by
notable accumulation of Aβ pathology over time.

Using a tau PET cutoff defined in healthy younger indi-
viduals, we observed that tau PET-measured MTL accumula-
tion in the absence of Aβ is a common condition in older in-
dividuals, representing 51% of A− individuals in this study. The
frequency of tau PET positivity in this A− sample is consistent
with a previous study using a similar method (67%),17 and it
is substantially higher compared with previous studies using
larger temporal ROIs without partial volume correction (ap-
proximately 17%-20%).15,37 The discrepancy may be ex-
plained by use of extra-MTL ROIs without partial volume cor-
rection, which results in a lack of sensitivity to MTL-specific
signal.

The degree to which FTP-PET can detect PART remains a
subject of debate. PET-to-autopsy studies generally agree that
local tau pathology needs to reach a certain density of neuro-
fibrillary tangles to be detected in an FTP-PET scan, which is
mostly the case for Braak stages V/VI.38-41 This may lead to the
conclusion that FTP-PET cannot detect PART-related tau dep-

osition, which is, by definition, Braak stage IV or less. Yet, FTP
showed binding to neurofibrillary tangles from PART brains in
autoradiography studies42,43 and, therefore, FTP-PET may de-
tect a subset of PART cases with suprathreshold neurofibril-
lary tangle density. To date, the number of PART cases in the
available PET-to-autopsy studies is low (n = 3)38 and we can-
not exclude that PART could be detected with FTP-PET in a sub-
set of individuals. This hypothesis is consistent with the fact
that the prevalence of tau PET positivity among older A− in-
dividuals in our study (51%) is considerably lower than the
prevalence of PART in this age range in neuropathologic
studies.5 The topography of our findings is also consistent with
PART: in line with recent studies,15,44,45 our results showed that
increased tau PET signal in A− TMTL+ individuals was largely
limited to the MTL. Both baseline and longitudinal increases
in tau PET signal in A− TMTL+ individuals were found to be par-
alleled by increases in CSF p-tau181 levels, suggesting that these
signal increases reflect actual increases in tau burden. To-
gether, these results suggest that PART may be an important
neuropathologic substrate for many A− TMTL+ individuals in
our study, although probably not the only one.15

We also acknowledge that pathologic entities other than
PART may lead to abnormal FTP-PET signal in the MTL among
Aβ-negative individuals. Although FTP shows high specificity
for AD-type tau aggregates in autoradiography studies,42,46,47

extensive increases in cortical FTP-PET signal in the absence of
Aβ can occur in patients with AD dementia or mild cognitive
impairment, which likely represent tangle-predominant
dementia.15,48 Moreover, FTP-PET increases can occur in fron-

Figure 4. Baseline and Longitudinal Characterization of Cognitive Performance
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totemporal dementia syndromes, including those associated
with tau and TAR DNA-binding protein 43 (TDP-43).49-52 The
binding mechanisms remain unclear, although binding to
non-AD tau as well as to neurodegenerative processes that co-
localize with TDP-43 deposition might result in nonspecific FTP
binding.49,53 Therefore, we cannot exclude the possibility that
limbic-predominant age-related TDP-43 encephalopathy, which
is associated with neurodegeneration in the MTL, might also re-
sult in abnormal FTP-PET signal in the same regions, although
the influence of limbic-predominant age-related TDP-43 en-
cephalopathy on FTP-PET appears to be limited.54 These con-
siderations suggest that the A− TMTL+ group likely represents
both a clinically and pathologically heterogeneous group. Thus,
increased FTP-PET signal in the MTL in the absence of Aβ should
not be considered a specific marker of PART. Despite these limi-
tations, our findings are valuable and contribute to understand-
ing the clinical and pathologic course of the A− TMTL+ group as
a whole. Yet, given its high frequency among cognitively un-
impaired individuals and those with mild average cognitive de-
cline, the clinical significance of the A− TMTL+ profile remains
uncertain. Additional work is needed to identify the subset of A−

TMTL+ individuals who will experience more relevant clinical
outcomes.

Given that longitudinal follow-up of neuropathologically
defined PART is not possible, a main controversy exists whether
PART reflects an early form of AD, with Aβ pathology devel-
oping in the further disease course, or whether it represents
an entirely distinct pathologic entity.12-14 Herein, we noted that
A− TMTL+ individuals did not show significant Aβ accumula-
tion over the available follow-up period, thus arguing against
the possibility that this condition reflects an early tau-first sub-
type of AD.55

Longitudinal cortical thickness analysis demonstrated that
A− TMTL+ individuals have moderate and restricted MTL at-
rophy progression, whereas atrophy is more accelerated and
spreads to widespread neocortical regions in A+ TMTL+ par-
ticipants. These results suggest that tau accumulation in Aβ-
negative individuals is not a benign process but is associated
with increased neurodegeneration,56 although the rates of pro-
gression are significantly slower compared with rates in A+

TMTL+ participants.
In cognition analyses, we did not find significant differ-

ences in baseline performance or longitudinal decline
between A− TMTL+ individuals and the A− TMTL− controls,
whereas a significantly faster decline was observed in cog-
nitively impaired A+ TMTL+ individuals. However, a more
sensitive analysis using continuous tau measures showed an as-
sociation of ERC tau uptake with worse cognition and faster cog-
nitive decline also in cognitively impaired A− participants. These

results suggest that, in the absence of Aβ, tau accumulation in
the MTL has only subtle effects on cognition and does not her-
ald the pronounced cognitive decline typical for AD. Further re-
search with longer follow-up might be necessary to delineate
the long-term consequences of ongoing tau accumulation in the
absence of Aβ.

Limitations
This study has limitations. The first of these is the lack of au-
topsy data of A− TMTL+ individuals, which leaves the exact as-
sociation between the PET-defined A− TMTL+ group and PART
to be determined. Second, we relied on cutoffs for group defi-
nition. While centiloid cutoffs for denoting Aβ status are well
established,27 a number of different methods and cutoffs for
defining tau PET positivity have been used in the literature,
resulting in highly variable proportions of the different A and
TMTL groups.57 Herein, we applied a commonly used method
for objectively defining biomarker cutoffs based on data from
healthy younger controls,34 and several of our principal find-
ings were replicated in complementary continuous analyses
that are independent of cutoff definition. Third, to achieve ro-
bust sample sizes of the less-prevalent A− TMTL+ individuals,
we pooled data across different cohorts. While the possible
influence of multicentric data acquisitions was minimized by
harmonizing imaging preprocessing, it limited our ability to
analyze domain-specific cognitive decline, as neuropsycho-
logical instruments differed across cohorts. Fourth, fol-
low-up time for the evaluation of both longitudinal clinical and
biomarker measures was relatively short. Fifth, the cohorts in-
cluded in our study represent selective research cohorts that
may not reflect the general population, and our findings should
be replicated in more diverse cohorts.

Conclusions
The results presented in this longitudinal cohort study sug-
gest that individuals with MTL tau accumulation in the ab-
sence of Aβ follow a separate, less malign, pathologic course
compared with that of typical AD. While these individuals
showed progressive tau accumulation and neurodegenera-
tion, this process was comparably slow, remained largely re-
stricted to the MTL, and was associated with only subtle
changes in global cognitive performance. Moreover, these in-
dividuals did not show notable Aβ accumulation over follow-
up, arguing against the possibility that this A− TMTL+ condi-
tion reflects a tau-first subtype of AD. Further studies are
warranted that specify the exact association of this common
PET-defined condition with pathologic PART.
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